Математический анализ. Начальный Курс
Автор: Ильин В.А.
Год: 1985
Страницы: 662
Язык: Русский
Издательство: МГУ
Для возможности заказывать книгу Вам необходимо зарегистрироваться
Описание: Учебник представляет собой первую часть трехтомного курса математического анализа для высших учебных заведений СССР, Болгарии и Венгрии, написанного в соответствии с соглашением о сотрудничестве между Московским, Софийским и Будапештским университетами. Книга включает в себя теорию вещественных чисел, теорию пределов, теорию не¬прерывности функций, дифференциальное и интегральное исчисления функций одной переменной и их приложения, дифференциальное исчисление функций многих переменных и теорию неявных функций.
ОГЛАВЛЕНИЕ
Предисловие титульного редактора 5
Предисловие ко второму изданию 6
Предисловие к первому изданию 6
Глава 1. ОСНОВНЫЕ ПОНЯТИЯ МАТЕМАТИЧЕСКОГО АНАЛИЗА 10
Г л а в а 2. ВЕЩЕСТВЕННЫЕ ЧИСЛА 29
§ 1. Множество чисел, представимых бесконечными десятичными дробями, и его упорядочение 29
1. Свойства рациональных чисел (29). 2. Недостаточность рациональных чисел для измерения отрезков числовой оси (31). 3. Упорядочение множества бесконечных десятичных дробей (34)
§ 2. Ограниченные сверху (или снизу) множества чисел, представимых бесконечными десятичными дробями 40
1. Основные понятия (40). 2. Существование точных граней (41).
§ 3. Приближение чисел, представимых бесконечными десятичными дробями, рациональными числами 44
§ 4. Операции сложения и умножения. Описание множества вещественных чисел 46
1. Определение операций сложения и умножения. Описание понятия вещественных чисел (46). 2. Существование и единственность суммы и произведения вещественных чисел (47).
§ 5. Свойства вещественных чисел 50
1. Свойства вещественных чисел (50). 2. Некоторые часто употребляемые соотношения (52). 3. Некоторые конкретные множества вещественных чисел (52).
§ 6. Дополнительные вопросы теории вещественных чисел 54
1. Полнота множества вещественных чисел (54). 2. Аксиоматическое введение множества вещественных чисел (57).
§ 7. Элементы теории множеств 59
1. Понятие множества (59). 2. Операции над множествами (60). 3. Счетные и несчетные множества. Несчетность сегмента [0, 1]. Мощность множества (61). 4. Свойства операции над множествами. Отображение множеств (65).
Глава 3. ТЕОРИЯ ПРЕДЕЛОВ 68
§ 1. Последовательность и ее предел 68
1. Понятие последовательности. Арифметические операции над последовательностями (68). 2. Ограниченные, неограниченные, бесконечно малые и бесконечно большие последовательности (69). 3. Основные свойства бесконечно малых последовательностей (73). 4. Сходящиеся последовательности и их свойства (75).
§ 2. Монотонные последовательности 83
1. Понятие монотонной последовательности (83). 2. Теорема о сходимости монотонной ограниченной последовательности (84). 3. Число е (86). 4. Примеры сходящихся монотонных последовательностей (88).
§ 3. Произвольные последовательности 92
1. Предельные точки, верхний и нижний пределы последовательности (92). 2. Расширение понятий предельной точки и верхнего и нижнего пределов (99). 3. Критерий Коши сходимости последовательности (102).
§ 4. Предел (или предельное значение) функции 105
1. Понятия переменной величины и функции (105). 2. Предел функции по Гейне и по Коши (109). 3. Критерий Коши существования предела функции (115). 4. Арифметические операции над функциями, имеющими предел (118). 5. Бесконечно малые и бесконечно большие функции (119).
§ 5. Общее определение предела функции по базе 122
Глава 4. НЕПРЕРЫВНОСТЬ ФУНКЦИИ 127
§ 1. Понятие непрерывности функции 127
1. Определение непрерывности функции (127). 2. Арифметические операции над непрерывными функциями (131). 3. Сложная функция и ее непрерывность (132).
§ 2. Свойства монотонных функций 132
1. Монотонные функции (132). 2. Понятие обратной функции (133).
§ 3. Простейшие элементарные функции 138
1. Показательная функция (138). 2. Логарифмическая функция (145). 3. Степенная функция (146). 4. Тригонометрические функции (147). 5. Обратные тригонометрические функции (154). 6. Гиперболические функции (156).
§ 4. Два замечательных предела 158
1. Первый замечательный предел (158). 2. Второй замечательный предел (159).
§ 5. Точки разрыва функции и их классификация 162
1. Классификация точек разрыва функции (162). 2. О точках разрыва монотонной функции (166).
§ 6. Локальные и глобальные свойства непрерывных функций . 167 1. Локальные свойства непрерывных функций (167). 2. Глобальные свойства непрерывных функций (170). 3. Понятие равномерной непрерывности функции (176). 4. Понятие модуля непрерывности функции (181).
§ 7. Понятие компактности множества 184
1. Открытые и замкнутые множества (184). 2. О покрытиях множества системой открытых множеств (184). 3. Понятие компактности множества (186).
Г л а в а 5. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ 189
§ 1. Понятие производной 189
1. Приращение функции. Разностная форма условия непрерывности (189), 2. Определение производной (190). 3. Геометрический смысл производной (192).
§ 2. Понятие дифференцируемости функции 193
1. Определение дифференцируемости функции (193). 2. Дифференцируемость и непрерывность (195). 3. Понятие дифференциала функции (196).
§ 3. Дифференцирование сложной функции и обратной функции 197
1. Дифференцирование сложной функции (197). 2. Дифференцирование обратной функции (199). 3. Инвариантность формы первого дифференциала (200). 4. Применение дифференциала для установления приближенных формул (201)
§ 4. Дифференцирование суммы, ж разности, произведения и частного функций 202
§ 5. Производные простейших элементарных функций 205
1. Производные тригонометрических функций (205). 2. Производная логарифмической функции (207). 3. Производные показательной и обратных тригонометрических функций (208), 4. Производная степенной функции (210). 5. Таблица производных простейших элементарных функций (210). 6. Таблица дифференциалов простейших элементарных функций (212) 7. Логарифмическая производная. Производная степенно-показательной функции (212).
§ 6. Производные и дифференциалы высших порядков 213
1. Понятие производной п-то порядка (213). 2. n-е производные некоторых функций (214). 3. Формула Лейбница для п-й производной произведения двух функций (216). 4. Дифференциалы высших порядков (218).
§ 7. Дифференцирование функции, заданной параметрически 220
§ 8. Производная векторной функции
Глава 6. ОСНОВНЫЕ ТЕОРЕМЫ О ДИФФЕРЕНЦИРУЕМЫХ ФУНКЦИЯХ 224
§ 1. Возрастание (убывание) функции в точке. Локальный экстремум 224
§ 2. Теорема о нуле производной 226
§ 3. Формула конечных приращений (формула Лагранжа) 227
§ 4. Некоторые следствия из формулы Лагранжа 229
1. Постоянство функции, имеющей на интервале равную нулю производную (229). 2. Условия монотонности функции на интервале (230). 3. Отсутствие разрывов первого рода и уст ранимых разрывов у производной (231). 4. Вывод некоторых неравенств (233).
§ 5. Обобщенная формула конечных приращений (формула Коши) 234
§ 6. Раскрытие неопределенностей (правило Лопиталя) 235
1. Раскрытие неопределенности вида -jp (235). Раскрытие
неопределенности вида (240). 3. Раскрытие неопределенностей других видов (243).
§ 7. Формула Тейлора 245
§ 8. Различные формы остаточного члена. Формула Маклорена 248
Остаточный член в форме Лагранжа, Коши и Пеано (248).
Другая запись формулы Тейлора (250). 3. Формула Маклорена (251).
§ 9. Оценка остаточного члена. Разложение некоторых элементарных функций 251
1. Оценка остаточного члена для произвольной: функции (251). 2. Разложение по формуле Маклорена некоторых элементарных функций (252).
§10. Примеры приложений формулы Маклорена 256.
1. Вычисление числа е на ЭВМ (256). 2. Доказательство иррациональности числа е (257). 3. Вычисление значений тригонометрических функций (258). 4. Асимптотическая оценка элементарных функций и вычисление пределов (259).
Глава 7. ИССЛЕДОВАНИЕ ГРАФИКА ФУНКЦИИ И ОТЫСКАНИЕ ЭКСТРЕМАЛЬНЫХ ЗНАЧЕНИИ 262
§ 1. Отыскание стационарных точек 262
1. Признаки монотонности функции (262). 2. Отыскание стационарных точек (262). 3. Первое достаточное условие экстремума (264). 4. Второе достаточное условие экстремума (265). 5. Третье достаточное условие экстремума (267). 6. Экстремум функции, недифференцируемой в данной точке (268). 7. Общая схема отыскания экстремумов (270).
§ 2. Выпуклость графика функции 271
§ 3. Точки перегиба 273
1. Определение точки перегиба. Необходимое условие перегиба (273). 2. Первое достаточное условие перегиба (276). 3. Некоторые обобщения первого достаточного условия перегиба (276). 4. Второе достаточное условие перегиба (277). 5. Третье достаточное условие перегиба (278).
§ 4. Асимптоты графика функции 279
§ 5. Построение графика функции 281
§ 6. Глобальные максимум и минимум функции на сегменте. Краевой экстремум 284
1. Отыскание максимального и минимального значений функции, определенной на сегменте (284). 2. Краевой экстремум (286). 3. Теорема Дарбу (287). Дополнение. Алгоритм отыскания экстремальных значений функции, использующий только значения этой функции 288
Глава 8. ПЕРВООБРАЗНАЯ ФУНКЦИЯ И НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ 291
§ 1. Понятие первообразной функции и неопределенного интеграла 291 1. Понятие первообразной функции (291). 2. Неопределенный интеграл (292). 3. Основные свойства неопределенного интеграла (293). 4. Таблица основных неопределенных интегралов (294).
§ 2. Основные методы интегрирования 297
Интегрирование замены переменной (подстановкой) (297).
Интегрирование по частям (300).
§ 3. Классы функций, интегрируемых в элементарных функциях 303
1. Краткие сведения о комплексных числах (304). 2. Краткие сведения о корнях алгебраических многочленов (307). 3. Разложение алгебраического многочлена с вещественными коэффициентами на произведение неприводимых множителей (311),. 4. Разложение правильной рациональной дроби на сумму простейших дробей (312). 5. Интегрируемость рациональной дроби в элементарных функциях (318). 6. Интегрируемость в элементарных функциях некоторых тригонометрических и иррациональных выражений (321).
§ 4. Эллиптические интегралы 327
Глава 9. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ РИМАНА 330
§ 1. Определение интеграла. Интегрируемость 330
§ 2. Верхние и нижние суммы и их свойства 334
1. Определение верхней и нижней сумм (334). 2. Основные свойства верхних и нижних сумм (335).
§ 3. Теоремы о необходимых и достаточных условиях интегрируемости функций. Классы интегрируемых функций 339
Необходимые и достаточные условия интегрируемости (339).
Классы интегрируемых функций (341).
§ 4. Свойства определенного интеграла. Оценки интегралов. Теоремы о среднем значении 347
1. Свойства интеграла (347). 2. Оценки интегралов (350).
§ 5. Первообразная непрерывной функции. Правила интегрирования функций 357
1. Первообразная (357). 2. Основная формула интегрального исчисления (359). 3. Важные правила, позволяющие вычислять определенные интегралы (360). 4. Остаточный член формулы Тейлора в интегральной форме (362).
§ 6. Неравенство для сумм и интегралов 365
1. Неравенство Юнга (365). 2. Неравенство Гёльдера для сумм (366). 3. Неравенство Минковского для сумм (367). 4. Неравенство Гёльдера для интегралов (367). 5. Неравенство Минковского для интегралов (368).
§ 7. Дополнительные сведения об определенном интеграле Римана 369
Предел интегральных сумм по базису фильтра (369).
Критерий интегрируемости Лебега (370).
Дополнение 1. Несобственные интегралы 370
§ 1. Несобственные интегралы первого рода 371
Понятие несобственного интеграла первого рода (371).
Критерий Коши сходимости несобственного интеграла первого рода. Достаточные признаки сходимости (373). 3. Абсолютная и условная сходимость несобственных интегралов (375), 4. Замена переменных под знаком несобственного интеграла и формула интегрирования по частям (378).
§ 2. Несобственные интегралы второго рода 379
§ 3. Главное значение несобственного интеграла 382
Дополнение 2. Интеграл Стилтьеса 384
1. Определение интеграла Стилтьеса и условия его существования (384). 2. Свойства интеграла Стилтьеса (389).
Глава 10. ГЕОМЕТРИЧЕСКИЕ ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА 391
§ 1. Длина дуги кривой 391
1. Понятие простой кривой (391). 2. Понятие параметризуемой кривой (392). 3. Длина дуги кривой. Понятие спрямляемой кривой (394). 4. Критерий спрямляемости кривой. Вычисление длины дуги кривой (397) 5. Дифференциал дуги (402). 6. Примеры (403).
1§ 2. Площадь плоской фигуры 405
Понятие границы множества и плоской фигуры (405).
Площадь плоской фигуры (406). 3. Площадь криволинейной трапеции и криволинейного сектора (414). 4. Примеры вычисления площадей (416).
§ 3. Объем тела в пространстве 418
1. Объем тела (418). 2. Некоторые классы кубируемых тел (419). 3. Примеры (421).
Глава 11. ПРИБЛИЖЕННЫЕ МЕТОДЫ ВЫЧИСЛЕНИЯ КОРНЕЙ УРАВНЕНИИ И ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ 422
§ 1. Приближенные методы вычисления корней уравнений 422
1. Метод «вилки» (422). 2. Метод итераций (423). 3. Методы хорд и касательных (426).
§ 2. Приближенные методы вычисления определенных интегралов 431
1. Вводные замечания (431). 2. Метод прямоугольников (434).
Метод трапеций (436). 4. Метод парабол (438).
Глава 12. ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ 442
§ 1. Понятие функции т переменных 442
1. Понятие m-мерного координатного и m-мерного евклидова пространств (442). 2. Множества точек m-мерного евклидова пространства (445). 3. Понятие функции т переменных (449).
§ 2. Предел функции т переменных 451
1. Последовательности точек пространства Ет (451). 2. Свойство ограниченной последовательности точек Ет (454). 3. Предел функции т переменных (455). 4. Бесконечно малые функции т переменных (458). 5. Повторные пределы (459).
§ 3. Непрерывность функции т переменных 460
Понятие непрерывности функции т переменных (460).
Непрерывность функции т переменных по одной переменной (462). 3. Основные свойства непрерывных функций нескольких переменных (465).
§ 4. Производные и дифференциалы функции нескольких переменных 469
1. Частные производные функции нескольких переменных (469). 2. Дифференцируемость функции нескольких переменных (470). 3. Геометрический смысл условия дифференцируемости функции двух переменных (473). 4. Достаточные условия дифференцируемости (474). 5. Дифференциал функции нескольких переменных (476). 6. Дифференцирование сложной функции (476). 7. Инвариантность формы первого дифференциала (480). 8. Производная по направлению. Градиент (481). § 5. Частные производные и дифференциалы высших порядков. 485 1. Частные производные высших порядков (485). 2. Дифференциалы высших порядков (490). 3. Формула Тейлора с остаточным членом в форме Лагранжа и в интегральной форме (497). 4. Формула Тейлора с остаточным членом в форме Пеано (500).
§ 6. Локальный экстремум функции т переменных 504
1. Понятие экстремума функции т переменных. Необходимые условия экстремума (504). 2. Достаточные условия локального экстремума функции т переменных (506). 3. Случай функции двух переменных (512). Дополнение 1. Градиентный метод поиска экстремума сильно выпуклой функции 514
1. Выпуклые множества и выпуклые функции (515). 2. Существование минимума у сильно выпуклой функции и единственность минимума у строго выпуклой функции (521).
Поиск минимума сильно выпуклой функции (526). Дополнение 2. Метрические, нормированные пространства 535
Метрические дространства. 1. Определение метрического пространства. Примеры (535). 2. Открытые и замкнутые множества (538). 3. Прямое произведение метрических пространств (540). 4. Всюду плотные и совершенные множества (541). 5. Сходимость. Непрерывные отображения (543). 6. Компактность (545). 7. Базис пространства (548).
Свойства метрических пространств 550
Топологические пространства 558
1. Определение топологического пространства. Хаусдорфово топологическое пространство. Примеры (558). 2. Замечание о топологических пространствах (562).
Линейные нормированные пространства, линейные операторы 564
Определение линейного пространства. Примеры (564).
Нормированные пространства. Банаховы пространства.
Примеры (566). 3. Операторы в линейных и нормированных пространствах (568). 4. Пространство операторов (569). 5. Норма оператора (569). 6. Понятие гильбертова пространства (572).
Дополнение 3. Дифференциальное исчисление в линейных нормированных пространствах 574
Понятие дифференцируемости. Сильная и слабая дифференцируемость в линейных нормированных пространствах (575).
Формула Лагранжа конечных приращений (581).
Связь между слабой и сильной дифференцируемостью (584). 4. Дифференцируемость функционалов (587). 5. Интеграл от абстрактных функций (587). 6. Формула Ньютона—Лейбница для абстрактных функций (589). 7. Производные второго порядка (592). 8. Отображение m-мерного евклидова пространства в п-мерное (595). 9. Производные и дифференциалы высших порядков (598). 10. Формула Тейлора для отображения одного нормированного пространства в другое (599).
Исследование на экстремум функционалов в нормированных пространствах 602
1. Необходимое условие экстремума (602). 2. Достаточные условия экстремума (605).
Глава 13. НЕЯВНЫЕ ФУНКЦИИ 609
§ 1. Существование и дифференцируемость неявно заданной функции 610
1. Теорема о существовании и дифференцируемости неявной функции (610). 2. Вычисление частных производных неявно заданной функции (615). 3. Особые точки поверхности и плоской кривой (617). 4. Условия, обеспечивающие существование для функции */ = /(*) обратной функции (618).
§ 2. Неявные функции, определяемые системой функциональных уравнений 619
1. Теорема о разрешимости системы функциональных уравнений (619). 2. Вычисление частных производных функций, неявно определяемых посредством системы функциональных уравнений (624). 3. Взаимно однозначное отображение двух множеств m-мерного пространства (625).
§ 3. Зависимость функций 626
1. Понятие зависимости функций. Достаточное условие независимости (626). 2. Функциональные матрицы и их приложения (628).
§ 4. Условный экстремум 632
1. Понятие условного экстремума (632). 2. Метод неопределенных множителей Лагранжа (635). 3. Достаточные условия (636). 4. Пример (637).
Дополнение 1. Отображения банаховых пространств. Аналог теоремы о неявной функции 638
1. Теорема о существовании и дифференцируемости неявной функции (638). 2. Случай конечномерных пространств (644). 3. Особые точки поверхности в пространстве п измерений. Обратное отображение (647). 4. Условный экстремум в случае отображений нормированных пространств (651).